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Abstract 

Grafting of hyperbranched polyamidoamine (PAMAM) dendrimer onto ultrafine silica followed 

by the introduction of phosphonic acid groups onto branch ends was carried out. First, an initiating site 

was incorporated into silica surface by reacting the silica silanol group with 3-aminopropyltriethoxysilane, 

producing amino-functionalized silica.  The free amine group content was controlled by varying ratios 

of methanol to water in the hydrolysis step of sol-gel reaction. Then grafting of PAMAM was performed 

by repetitive reactions between Michael addition of silica amino groups to methyl acrylate and 

amidation of the resulting terminal methyl ester groups with ethylenediamine. Amino group content in 

each generation was determined. This was found to be significantly lower than theoretical value due to 

unavoidable side reactions.   After the G3.0 hyperbranched PAMAM grafted onto silica was synthesized, 

phosphonic acids functionalization of the terminal amino groups by the Mannich type reaction was 

carried out. The phosphorylated hyperbranched PAMAM grafted silica was achieved and its 

application on cotton fabric to produce phosphonated cellulose was studied.  
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1. Introduction 

Polyamidoamine (PAMAM) dendrimers, the starburst polymers with a plurality of terminal 

functional groups have attracted considerable interest due to their novel functionalities such as 

nanoscopic containers, delivery devices, ultrafine colloid stabilizers and nanocomposite materials             

[1-8]. Surface modifications of terminal groups with different functionalities such as acetamide, 

hydroxyl, carboxyl or quaternized PAMAM dendrimers further increase the versatile applicability of 

these materials[9-13]. Focused on nanoparticle fillers such as carbon black and silica, these materials 

are widely used for rubber and plastics. A good uniform dispersion of extremely fine particle size for 

most of their applications is important. However, these nanoparticles by nature are found in micron 

sized aggregate whose performance is inferior to those of the nanometer sized form. This problem of 

nanoparticles having a strong tendency to agglomerate is solved by surface modification[14-17].  The 

grafting of PAMAM dendrimer onto inorganic particle’s surface is one possibility[18-20]. The grafted 

dendrimer effectively prevents agglomerate formation, resulting in the stability of ultrafine 

nanoparticles in the colloidal state or dispersibility in the polymer matrix.  Nanometer-sized fillers are 

expected to exhibit the attractive interaction with polymer matrix at very low filler content, resulting in 

an improved performance of nanocomposite materials.  Another interesting effect is that the PAMAM 

attached on inorganic particles leads to hybrid materials with special characteristics particularly high 

performance chelating agents[21] and nanoreactors in which metal nanoparticles are stabilized[22]. 

Other interesting performance concerned with nanocomposites includes reduced gas permeability, 

increased solvent resistance and reduced flammability. In this study, this type of nanoparticle was 

specially designed to impart its flame retardancy performance on cotton cellulose.  When considering 

flame retardants for cellulose and cellulose derivatives, phosphorus-based flame compounds have 

been a major interest because of their environmentally friendly products and their low toxicity, as well 

as, their low evolution of smoke in fire. These compounds will promote dehydration and char formation.   

2. Experimental 

 2.1 Materials and reagents 

Fumed  silica  (AEROSIL  200) was purchased  from  JJ  Degussa  (Thailand), Co., Ltd.   

Methyl acrylate (MA),  ethylenediamine (EDA),  and  3-aminopropyltriethoxysiliane (APTES) from Fluka  

were used without purification.  Phosphorus acid was purchased from Aldrich and formaldehyde was 

obtained from Fluka. Toluene and methanol were distilled before use. Dicyandiamide as a catalyst for 
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the phosphonic acid and cellulose reaction was bought from Fluka.  Dyed knitted industrial cotton 

fabric was obtained from textile dyeing factory.   

 2.2 Incorporation of amino groups onto ultrafine silica particle     

The attachment of amino groups onto the silica surface was achieved by the condensation 

reaction between surface silanol groups and 3-aminopropyltriethoxysilane. Into a 600 ml flask, 15.0 g 

of fumed silica and 500 ml of 10% v/v toluene solution of 3-aminopropyltriethoxysilane were charged, 

and the fumed silica particles were homogenously dispersed by a magnetic stirrer for 30 minutes. 

Then 50 ml of methanol: water (4:1 or 2:1) was added to the mixture and stirred for 72 hours. After that, 

the modified silica particles were filtrated and extracted with toluene for 24 hours using soxhlet 

extractor to remove unreated 3-aminopropyltriethoxysilane. The APTES treated silica was dried in an 

oven at 600C for 24 hours and stored in autodehumidity desiccators  

 2.3 Grafting of hyperbranched polyamidoamine dendrimer from silica surface 

  The Michael addition was carried out as follows:  a 1,000 ml flask containing 20.0 g APTES 

treated silica was added drop by drop with 600 ml of methanol having methyl acrylate with the 

concentration of 10 times higher than the amino content found in treated silica.  The mixture was 

stirred at room temperature for 48 hours. The methanol and unreacted methyl acrylate were 

evaporated by reduced pressure evaporator.  The amidation of terminal ester groups from the Michael 

addition step was carried out as follows: the whole amount (34 g) of ester terminated silica obtained 

from Michael addition step was put into a 1000 ml round bottom flask. Then, 500 ml of methanol was 

added.  A solution containing 45 ml of EDA and 100 ml of methanol was added. The mixture was 

vigorously stirred at room temperature for 72 hours. The solvent and unreacted EDA were removed by 

a rotary evaporator performing at the temperature no higher than 400C.  The propagation for second 

and third generations was carried out by repeating the two step reactions, Michael addition and 

amidation.  

 2.4  Phosphorylation of hyperbranched PAMAM grafted silica 

 Hyperbranched PAMAM grafted silica (0.2 mole) and crystalline phosphorous acid (0.4 mole) 

were dissolved in 200 ml of water and concentrated hydrochloric acid (0.6 mole). The mixture was 

heated to reflux in a three-necked flask fitted with thermometer, condenser and dropping funnel. In the 

course of ca 1 hour, 40% aqueous formaldehyde solution (0.8 mole) was added by drops, and the 

reaction was kept at the reflux temperature for an additional hour. The water was evaporated at low 
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temperature using a rotary evaporator. The concentrated solution was neutralized with concentrated 

ammonia solution. Finally, the concentrated solution was precipitated in methanol to get yellowish solid 

gel-like product.  

 2.5 Fixation of phosphorylated hyperbranched PAMAM grafted silica on cotton fabric 

Knitted Cotton fabrics were treated with a solution containing 30% w/w phosphorylated 

hyperbranched PAMAM grafted silica, 30% w/w urea and 20 g/l dicyandiamide as a catalyst.  The 

application was performed using a pad mangle set a pressure nip at 80 percent wet pick up.  The 

padded fabric was dried at 100ºC for 5 min and cured at 170 ºC for 3 min to allow the covalent 

reaction, leading to phosphonated cellulose produced. The treated fabric was washed-off to remove 

unfixed agents. Then thermal property of the treated fabric was analyzed using TGA analysis. 

 2.6 Determination of amino group content on hyperbranched PAMAM grafted silica 

The amino group content of hyperbranched PAMAM grafted silica was determined by titration 

technique. Into a 125 ml flask, 0.1000 g of grafted silica and 25 ml of 0.01 M hydrochloric acid 

aqueous solution were charged. The mixture was stirred at room temperature for 2 hours. Then, the 

mixture was filtrated and titrated with a standardized aqueous solution of sodium hydroxide using 

phenolphthalein as an indicator. 

 2.7 Determination of percent grafting 

 The weight of PAMAM grafted onto the silica surface was determined by weight loss 

measurement.  PAMAM grafted silica was burnt out at 8000C using TGA (Mettler Toledo STARe System 

DCS822e Module). The percentage of grafting was calculated from the difference between 

percentage of determined original weight of PAMAM grafted silica sample and the percent residual 

silica.  

 2.8 Characterizations 

The morphology of hyperbranched PAMAM grafted silica was observed by scanning electron 

microscopy (JEOL JSM-5410LV)   operated   at 15   kv   accelerating   voltage.  The particle size 

distribution was analyzed using laser light scattering (Mastersizer 2000).  FTIR spectroscopy taken on 

KBr pellet samples was recorded   on   a   Nicolet Impact 400D spectrophotometer.  1H NMR spectra 

of the samples were recorded on Bruker DPX-300 spectrometer.  TGA was performed using Mettler 

Toledo STARe System DCS822e Module.  
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3. Results and discussion 

 3.1 Introduction of amino groups onto the silica surface 
The treatment of silica with APTES resulted in silica particle containing amino groups on the 

surface which acted as the initiator sites for PAMAM grafting. The condensation reaction is base-

catalyzed and APTES amine groups are self-catalyzed component. The mechanism involved the 

hydrolysis of APTES triethoxy groups by water, yielding silanol groups. Then condensation reaction 

between APTES silanol group and silica silanol group took place on silica surface as shown in Figure  

1. The amount of water present in the system significantly influenced the hydrolysis reaction of 

triethoxy groups and the condensation reaction on silica surface [23]. 
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Figure 1. Chemical equation of hydrolysis reaction from alkoxysilanes (a) and self condensation 

reaction (b) or  (c) condensation reaction between APTES and silica. 

The rate of hydrolysis and condensation reaction was controlled by using a mixture of water 

and methanol. In this study, the methanol to water ratios of 4: 1 and 2: 1 were used.  The measured 

amino contents on silica plotted against reaction times are shown in Figure 2. The amino group 

content increases with an increase in the amount of water and reaction time. Water was consumed to 

convert APTES triethoxy groups to silanol groups (hydrolysis reaction).  The amount of water, hence, 

determined the rate of hydrolysis. Consequently, the more silanol groups produced the higher the rate 

of subsequent silanol condensation reaction. Amino-functionalized silica for PAMAM grafting was 

prepared as follows: a 2:1 ratio of methanol to water was used and the surface functionalization of 

silica particles was allowed to occur for three days. 
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Figure 2 Amino group content measured on APTES treated silica versus reaction time 

Figure 3 compares FTIR spectra between APTES grafted silica, virgin silica and APTES. Silica 

which is an inorganic substance in nature exhibits the strong absorption band of siloxane (Si-O-Si) 

bonding at ~1,200 cm-1 and the silanol OH band in the range of 3,200 ~3,400 cm-1. When considering 

the APTES silica, organo-functionalized silica, its spectrum exhibits new absorption frequencies at 

2932 cm-1 and 1640 cm-1. These bands are associated to C-H stretching and primary amine (-NH2) 

stretching absorptions, respectively.  Also, these bands are found corresponding with the absorption 

characteristics of APTES spectrum.  These results indicate that APTES was incorporated into silica 

particles. The silica surface modification is further confirmed by change observed in spectrum pattern 

in the region of silanol OH band (3200 – 3400 cm-1) due to new inter-hydrogen bonding interaction 

among APTES silica particles.  

 
Figure 3 FTIR spectra of silica, APTES and APTES grafted silica 

 

 3.2 Grafting of hyperbranched PAMAM from silica surface 

 Grafting of hyperbranched PAMAM onto the surface of amino-functionalized silica was carried 

out by repeating two processes, Michael addition and amidation which were used  in the same 
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manner as in the synthesis of PAMAM dendrimers [24]. FTIR results are shown in Figure 4.   In the 

Michael addition step, the   terminal methyl ester group of G0.5, G1.5 and G2.5 products shows a 

strong and distinguishable band at 1740 cm-1.  This peak completely disappears from the spectra of 

G1 and G2 as a result of the amidation reaction.   In this step, the terminal amine group was produced, 

corresponding to the appearance of the strong absorption intensity of the N-H band in the region of 

3000 - 3350 cm-1.  Its absorption intensity significantly increases with an increase in PAMAM 

generation, reflecting that the terminal amine groups also significantly increases. Focused on G3.0 

hyperbranched PAMAM grafted silica,  the absorption peaks at 1649  cm-1 and 1568 cm-1 are 

characteristics of C=O stretching and N-H bending. The absorption peaks at 3281 cm-1 and 3086 cm-1 

correspond to N-H antisymmetric stretching and N-H symmetric stretching of primary amine, 

respectively.  In accordance, the C-H band at 2900 cm-1 which shows up strongly in the spectra of 

G0.5 and G1.5 becomes less dominant due to suppressing influence by the surrounding N-H band.   

    
Figure 4  FTIR spectra of G0.5 – G3.0 hyperbranched PAMAM grafted silicas. 

 From the TGA analysis, percent graftings were calculated and their results are also given in 

Figure 5. The percent grafting increases when PAMAM generation grows as a result of PAMAM 

propagation from the silica surface amine groups. The amino group contents were expected to 

increase in a similar manner to percent grafting.   

 
Figure 5 Percent grafting of PAMAM on silica surface and amino group content 
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 3.3 SEM analysis and particle Size Analysis 

By nature, the as-received fumed silica nanoparticles powder aggregated and formed micron-

sized nanoclusters.  Typically, physical interaction among nanoparticles is too strong to separate them 

by mechanical agitation means into individual particles due to its large surface area characteristic. In 

this study, the effect of hyperbranched PAMAM dendrimer grafted onto silica surface on particle 

disaggregation and its stability was examined using SEM and particle size analysis.  SEM images are 

shown in Figure 6. As found in SEM, as-received fumed silica particles are tightly packed and adhered 

together in agglomerate form. After grafting, changes in particle distribution behavior as well as the 

agglomerate size were observed and the results are also shown in Figure 7. The results indicate that 

hyperbranched PAMAM grafting onto silica has been proven to be successful in dispersing particle 

agglomeration. This achievement was due to the steric role of grafted hyperbranched PAMAM. Figure 

7 shows the particle size distribution comparison between as-received fumed silica and 

hyperbranched PAMAM graft silica. As can be seen, the particle sizes before treatment are in an 

average size of ~100 microns and then after modification the particle sizes decrease to ~100 

nanometers.   
 

     
Figure 6 The SEM images of (a) silica, (b) G0.5 PAMAM grafted silica and (c) G1.0 PAMAM grafted 

silica. 
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Figure 7 The particle size distribution of (a) virgin silica, (b) grafted silica, (c) G0.5 PAMAM grafted 

silica  and (d) G1.5 PAMAM grafted silica. 
 

 3.4 Phosphorylation of hyperbranched PAMAM grafted silica 
The reaction products were characterized using FTIR analysis and FTIR spectra are shown in 

Figure 8 (a).  When considering the spectrum of the phosphonic acid functionalized silica, new peaks 

are observed, indicating change occurring in the structure of hyperbranched PAMAM grafted silica.  

The presence of  phosphonic acid moiety is correspondent to the absorption bands at 1182 cm-1 , 

1078 cm-1, 923 cm-1 which are the characteristic peaks of  (P=O), (P-OH) and (P-O) groups, 

respectively[25 – 28].  A very broad band extending from 3,600 cm-1 to as low as 2,500 cm-1 is also 

observed, attributing to  the absorption characteristic of the phosphonic acid hydroxyl group (OH).    It 

is noticed that N-H stretching band  at 3500 cm-1 in hyperbranched PAMAM grafted silica markedly 

decreases, reflecting its consumption by Mannich reaction.  1H NMR analysis was also performed.  In 

the 1H NMR spectrum of phosphonic acids functionalized PAMAM grafted silica in Figure 9 (b), signals 

indicate the presence of C(1)-H2 and C(2)-H2 groups and a methylene group adjacent  to phosphorous 

nucleus are found at 3.6 and 3.7 ppm, respectively.  

 
 

                                        (a)                                                                           (b) 

Figure 8 (a) FTIR spectra of hyperbranched PAMAM grafted silica (gsilica 3.0) and phosphorylated 

hyperbranched PAMAM grafted silica(Pgsilica 3.0), (b) 1H NMR spectrum of phosphorylated 

hyperbranched PAMAM grafted silica 
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 3.5 Flame retardancy effect testing 

Phosphorylated hyperbranched PAMAM grafted silica potentially offered powerful chelating 

action and flame retardancy properties.   Treatment of cotton with phosphorylated hyperbranched 

PAMAM grafted silica was expected to render cotton fire resistant.  The treated cotton fabric was 

subject to vertical burning test (Figure 9).  Its burning behavior was compared with those of untreated 

cotton.  As observed, the cotton fabric treated with phosphorylated hyperbranched PAMAM grafted 

silica exhibited fire retardancy property. 

 
 

Figure 9  Vertical flammability test of 30 % phosphorylated hyperbranched PAMAM grafted silica 

treated cotton fabric at various concentrations of urea. 

TGA thermograms shown in Figure 10 present the decomposition temperature of treated and 

untreated cotton fabrics. The untreated fabric starts to decompose at about 3000C, continues to reach 

the 100% weight loss at 3500C [29].  In case of treated fabric, the temperature of degradation begins 

at the relatively lower temperature of 2900C. The pyrolysis of flame retardant finished cotton fabric has 

lower decomposition temperature because of a catalytic dehydration of cellulose by the flame 

retardant, leading to char forming on fabric surface. The decline of degradation temperature is due to 

the fact that the phosphorous compounds react with C6 hydroxyl of the cellulose anhydroglucose unit, 

blocking the formation of levoglucosan (source of fuel). Then, it will reduce the amount of fuel to the 

flame and promote char formation. Moreover, its structure contains nitrogen atoms which act 

synergistically with phosphorus [30]. It is known that nitrogen enhances the electrophilicity of 

phosphorous thereby making a stronger Lewis acid and also promoting the phosphorylation reaction 

with C(6) hydroxyl group of anhydroglucose unit.    
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Figure 10. TGA thermograms of treated and untreated cotton fabrics. 

4. Conclusions 

The grafting of hyperbranched PAMAM dendrimer onto amino groups functionalized silica was 

successfully achieved by repetitive reactions between Michael addition of silica amino group to methyl 

acrylate and amidation of the resulting terminal methyl ester group with ethylenediamine.  A series of 

silicas grafted with hyperbranched PAMAM dendrimer up to generation 3 were produced. Percent 

grafting calculated from TGA results were 41.21, 76.05 and 91.33 for G1.0, G2.0, and G3.0, 

respectively. The amino group contents of G1.0, G2.0, and G3.0 were 14.62, 23.26, and 60.21 mmol/g 

silica, respectively, showing an increasing trend which is the same manner as the percent grafting. It 

was found that grafted hyperbranched PAMAM caused the steric role in dispersing particle 

agglomeration.  The agglomerate size before grafting averaged ~100 microns and after grafting the 

particle size significantly decreased to a range of ~ 10 nanometer. The phosphorylation of the 

hyperbranched PAMAM dendrimer terminal amino groups was successfully achieved by Mannich type 

reaction. The phosphorylated products containing the phosphonic acids exhibited flame retardancy 

when applied onto flammable cotton fabric.  
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